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ABSTRACT 
 

We first estimate the relationship between house prices and environmental disamenities 

using spatial statistics, confirming that nearby point-source pollutants depress house 

price. We then calculate implicit prices of environmental quality and related 

characteristics from the house price hedonics to estimate a demand curve for 

environmental quality, finding a price elasticity of demand of –0.12.  We find evidence of 

significant spatial effects in both the hedonic and demand estimations.  We find that 

environmental quality and school quality are purchased together (η=-0.80), 

environmental quality and house size are substitutes (η=0.91), and environmental quality 

and lot size are not related goods. 
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I.  INTRODUCTION 

A century of industrial activity has left the metropolitan areas of the United States 

pocked with abandoned factories, landfills, and other small but significant sources of air, 

water and ground pollution.  The U.S. Environmental Protection Agency spent $7.8 

billion in 2001 to combat and monitor pollution.  The EPA’s fiscal year 2001 budget 

includes $1.8 billion for the Brownfields National Partnership to redevelop contaminated 

land; it also includes $1.45 billion for proposed toxic waste site cleanup (U.S. Office of 

Management and Budget, 2001).  Other agencies charged with environmental cleanup 

include the Departments of Defense, Transportation, Agriculture, and Energy, as well as 

various state government agencies.  Since government resources are being used to clean 

up the environment, it is instructive to ask how consumer well being is affected by 

changes in environmental quality and what factors influence the demand for 

environmental quality in urban areas.  

Demand curve estimation requires a set of demand shifters, a measure of quantity 

demanded, and the price of the good.  Because no explicit price exists for a unit of 

environmental quality, researchers often use the housing market to derive its implicit 

price.  Our study extends the literature in the following ways.  First, the data set we use is 

large and unique, consisting of 44,255 houses in 5,051 census block groups (CBG), 

matched with local public goods and environmental hazards identified by the Ohio EPA.  

Second, we use spatial statistics to estimate hedonic house price equations, using the 

distance from each house to the nearest hazard as our measure of environmental quality.  

Spatial statistics represents a powerful, underutilized tool in urban and environmental 

economics, capable of addressing omitted variable bias.  Our use of spatial statistics 
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provides more efficient, consistent, and unbiased estimates for the relationship between 

house price and environmental quality than previous studies.  Third, we estimate a 

demand curve for environmental quality using spatial statistics.  Little attention has been 

given to the demand for freedom from point-source, land-based pollution in urban areas.  

Given the political importance of urban brownfields, this is an unfortunate deficit, which 

we attempt to begin to address with this study. 

Significant spatial effects are found in all six hedonic house price estimations and 

the demand estimation, suggesting that in future hedonic studies, researchers should at 

least test their data for spatial effects.  Proximity to an environmental hazard appears to 

have a small, but statistically significant relationship with constant-quality house price.  

At the mean, increasing the distance of a house from the nearest environmental hazard by 

ten percent is associated with a three percent rise in constant-quality house price.   

The estimated own price elasticity of demand for environmental quality in urban 

areas is –0.12.  A relatively inelastic demand curve may suggest that people are not very 

sensitive to changes in the price of environmental quality.  Another interpretation is that 

individuals cannot easily respond to changes in environmental quality:  they can only 

change environmental quality through collective action or moving.  Cleanup is likely to 

require significant time to achieve, while moving presents a large fixed cost. Brownfields 

projects, toxic waste cleanup, and other programs to clean up point-source pollution seem 

to have support from homeowners.   

The cross-price elasticity between environmental quality and school quality is      

-0.80, suggesting that school quality is complementary to environmental quality.  People 

tend to purchase houses in good school districts in areas where relatively few point-
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source pollutants exist.  On the other hand, house size is a substitute for environmental 

quality, implying that homeowners may trade off environmental quality to get a larger 

house.  Next, one may expect that environmental quality and lot size would be purchased 

together, but our results suggest that the size of the lot and environmental quality are 

neither complements nor substitutes.  Income levels are positively related to the demand 

for environmental quality, but the income elasticity of environmental quality is only 0.04.  

Higher-educated people and households with children tend to demand more 

environmental quality than less-educated people and households without children.   

 

II.  ANALYTICAL FRAMEWORK 

 Unlike the market for most tangible goods, the market for environmental quality 

does not yield an observable per unit price.  Some researchers find the price of 

environmental quality by using direct elicitation of willingness to pay, travel costs, 

averting costs, direct monetary damages, the household production approach or some 

combination of the above (Cameron, 1992); others use the hedonic house price method.  

Previous studies have used the hedonic approach to estimate the relationship between 

house price and air pollution (Kiel and McClain, 1995; Chattopadhyay, 1999; Smith and 

Deyak, 1975; Beron, Murdoch and Thayer, 2001), water pollution (Hoehn, Berger and 

Blomquist, 1987), and hazardous waste sites (Kohlhase, 1991; Hite et al., 2001; Nelson, 

Genereux and Genereux, 1992). 
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2.1  The Hedonic Method 

The formal theory of hedonic markets is generally credited to Sherwin Rosen 

(1974). Hedonic theory suggests that the price of a house represents the sum of 

expenditures on a number of bundled housing characteristics, each of which has its own 

implicit price.  These housing characteristics include structural attributes such as the 

number of rooms and the square footage of the house and the yard.  Expenditures on 

other less tangible characteristics, including local public goods and environmental 

quality, also contribute to house price.   

The first stage hedonic estimates may be used to calculate the implicit price of 

housing characteristics.  Rosen was the first to recommend using implicit prices to 

estimate a demand function in a second stage of analysis.  Assuming that environmental 

quality increases directly with distance from a disamenity, we derive the implicit price of 

a unit of environmental quality from a series of house price hedonic estimations.  In 

addition we estimate implicit prices for other related characteristics, such as house size, 

lot size, and the quality of local schools.  We then use instrumented implicit prices along 

with exogenous shift variables to estimate the demand for environmental quality. 

2.1.1  Segmentation and Identification  The main shortcoming of Rosen’s second 

stage demand estimation is that the estimated implicit price may not contain any 

information beyond what the first stage hedonic provides.  The only new information is 

the functional form restriction placed on the demand equation.  If there is no new 

information, the estimated demand equation simply reproduces the results of the hedonic 

regression from which it was produced initially (Tinbergen, 1956; Brown and H. Rosen, 

1982); that is, the demand cannot be identified from the hedonic.  There are other ways to 
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deal with the identification problem (e.g., Quigley, 1982; Chattopadhyay, 1999), but the 

most widely accepted solution found in the literature is the use of segmented markets 

(Brown and H. Rosen, 1982; Palmquist, 1984; Zabel and Kiel, 2000; Brasington, 2000, 

2003).1  A separate hedonic house price function is estimated for each market segment.  

In our case, market segments consist of the six major metropolitan areas in Ohio: Akron, 

Cincinnati, Cleveland, Columbus, Dayton, and Toledo.  Estimating hedonic functions for 

the six metro areas separately generates six different parameter estimates for the 

relationship between environmental quality and house price, from which the implicit 

prices are calculated.  The implicit prices are then instrumented and pooled to estimate 

the demand equation.  Use of segmented markets combined with the pooled demand 

estimation addresses the identification problem.2 

          How can a researcher theoretically justify using a separate hedonic for each 

metropolitan area?  Palmquist (1984) assumes there is no segmentation within a metro 

area but there is between them because of moving costs; however, moving between 

suburbs of a single metro area costs nearly as much as moving between metro areas.  So 

instead we reason that market segmentation arises between metro areas but not within a 

metro area because of different construction costs and job availability.  It is relatively 

easy to commute to the workplace from anywhere in the same MSA.  It becomes more 

difficult to commute to the workplace from a different MSA.  It is even more difficult 

and costly in the short run to find a job in a new metro area and move to that new area, 

than to move or find a new job in the same metro area.   

 Most previous papers that use market segmentation to address identification 

simply assume their data constitutes segmented markets.  The current study goes a step 
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further by running a series of Chow tests of the form described in Kennedy (1992, p.108).  

The Chow tests support the assertion that each of the six Ohio MSAs represents a 

different segmented market.  Consequently, a separate hedonic is estimated for each 

metropolitan area.3  

 

2.2  First Stage Hedonic Analysis 

An important estimation problem that we address in the first stage hedonic is 

spatial dependence in the data.  One example of spatial dependence is when a given 

house affects the price of neighboring houses (LeSage, 1997).  Ordinary least squares 

does not account for the interplay between spatially close observations, which may lead 

to biased, inefficient and inconsistent parameter estimates (Anselin, 1988, p.58-59; 

LeSage, 2001).  A study by He and Winder (1999) demonstrates bi-directional price 

causality between three adjacent housing markets in Virginia, suggesting that there may 

indeed be spatial effects in housing markets.  An instrumental variables technique may be 

used, but most attempts to adjust for spatial effects have been based on maximum 

likelihood (Anselin and Hudak, 1992).  Using maximum likelihood in the manner that 

follows not only addresses spatial effects but may also help with identification above and 

beyond the use of segmented markets (Epple, 1987). 

The traditional house price hedonic takes the following form:  

v = βx + ε,                       (1) 

where v represents the average value of a house in a CBG, x is a vector of explanatory 

variables and ε is the error term.  Rather than using the traditional hedonic model of 

Equation (1), we use a spatial Durbin model to address the problem of spatial dependence 
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(Pace and Barry, 1997a).4  The spatial Durbin model includes a spatial lag of the 

dependent variable as well as spatial lags of the explanatory variables, as in Equation (2):  

v = ρWv + Xβ +WXα + ε, ε  ~ N(0,σ2In)           (2)  

In Equation (2) the scalar term ρ is the spatial autoregressive parameter to be 

estimated.  It measures the degree of spatial dependence between the values of nearby 

houses in the sample.  The W term is an n by n spatial weight matrix.  It has non-zero 

entries in the i,jth position, reflecting CBGs that are nearest neighbors to each of the i 

block groups in the sample.  In this manner the spatial weight matrix W summarizes the 

spatial configuration of the sample.  Next, X is the explanatory variable matrix X with the 

intercept excluded, and α is the parameter associated with the spatial lag of the 

explanatory variables. 

The Wv term in (2) captures the extent to which house prices in one area are 

affected by the price of houses in neighboring areas.  Such spatial interplay is appropriate 

because, among other reasons, when a house is put on the market, the offer price is often 

set with the knowledge of the selling price of similar houses in the neighborhood.  

Multiple listing services publish offer prices and newspapers in Ohio publish sale prices, 

so typically offers and bids on houses will be influenced by offers and bids on nearby 

houses.  

The WXα term in (2) allows the structural characteristics of neighboring houses to 

influence the price of each house.  A common saying in real estate is to never own the 

largest (or the smallest) house on the block:  the market will force such a house to sell at 

a discount, an example of the type of impact captured by WXα.  The WXα term also 

allows other structural characteristics of neighboring houses to affect the sale price of 
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houses.  Glower, et al. (1998) find that the degree to which a house is atypical influences 

its time on the market and sale price, so it may be important to incorporate the structural 

characteristics of neighboring houses into the house price hedonic. 

The WXα term also captures how the price of houses in one area depends on the 

characteristics of neighboring areas.  For example, school quality differs across space.  

The WXα term allows the quality of neighboring schools to spill over--possibly through 

peer group effects--and influence the price of houses in the original school district.  

Poverty may impose negative externalities and therefore spill over across CBG 

boundaries.  In addition, the tax competition literature suggests that the tax rate charged 

by a neighboring taxing jurisdiction will affect the tax rate chosen by the home 

jurisdiction, which may in turn affect house prices.  The WXα term allows for these types 

of spillovers. 

There are few published environmental economics studies that use spatial 

statistics.  Geoghegan, Wainger and Bockstael (1997) employ spatially-explicit indices.  

Gawande and Jenkins-Smith (2001) estimate a house price hedonic using a simple spatial 

autoregressive model.  Leggett and Bockstael (2000) and Bockstael and Bell (1998) use a 

simple spatial error model.  But the spatial technique we adopt allows for spatial 

dependence through both the prices of nearby properties and through the x-characteristics 

of nearby properties.  It is a more general model than the spatial autoregressive model 

and the spatial error model, capable of capturing spatial dependence from more sources 

than the models of Gawande and Jenkins-Smith (2001), Bockstael and Bell (1998), or 

Leggett and Bockstael (2000).  In fact, imposing restrictions on the spatial Durbin model 

can yield both the spatial error model and the spatial autoregressive model. 
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The log-likelihood for the spatial Durbin model in Equation (2)--concentrated 

with respect to the parameters β and σ--takes the following form (Anselin, 1988, p. 181; 

Pace and Barry, 1997a): 

ln L = C + ln |In - ρW| -(n/2)ln(e′e)                 (3) 

where  

e = eo - ρed 

eo = v - Zβo 

ed = Wv - Zβd 

βo = (Z′Z)-1Z′v 

βd = (Z′Z)-1Z′Wv 

Z = [X WXI] 

and C is a constant term that does not involve the parameters.   

The need to compute the log-determinant of the n by n matrix (In - ρW) makes it 

computationally difficult to solve the maximum likelihood problem in Equation (3).  But 

the sparsity of W may be exploited (Pace, 1997; Pace and Barry, 1997a) so that a personal 

computer can handle the large data set estimations with computational ease.  The 

Cholesky decomposition is used in Barry and Pace’s (1999) Monte Carlo estimator to 

compute the log-determinant over a grid of values for ρ restricted to the interval [0,1].  

This estimator allows larger problems to be tackled without the memory requirements or 

sensitivity to orderings associated with the direct sparse matrix approach. 

 2.2.1 Omitted Variable Bias  The sparse spatial Durbin procedure has been 

demonstrated to greatly improve cross-sectional regression estimates that are spatial in 

nature (Pace, 1998a, 1998b; Pace and Barry, 1997b).  Part of the improvement stems 
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from incorporating the influence of omitted variables (Anselin, 1988, p.103; Pace, Barry 

and Sirmans, 1998).  Traditional hedonic estimation does not address omitted variable 

bias.  Attempts to circumvent the problem include focusing on narrow geographic areas 

where many influences are already controlled for (e.g., Brasington, 2003), or including 

vast numbers of explanatory variables to capture every influence which diligent data 

collection can offer.  Still, studies with limited geographic coverage have limited appeal, 

and structural characteristics may be similar within small areas so that multicollinearity 

problems are exacerbated.  In fact, in most papers it is precisely the variation across 

markets that enables identification in the Rosen two-stage hedonic demand estimation.  

Furthermore, the presence of omitted variables is a primary source of identification 

difficulties.  By addressing omitted variable bias, spatial statistics may also help with 

identification.   

Similar to the way a time lag of the dependent variable picks up unobserved 

autoregressive influences, the spatial lag term Wv picks up unobserved influences that 

affect house value (Bolduc et al., 1995; Griffith, 1988, p.82-83).  But while a lagged 

dependent variable in time series regressions relies on observations nearby in time, the 

spatial lag relies on a linear combination of house values nearby in space. Unmeasured 

influences help determine the value of neighboring houses and, as explained earlier, the 

value of neighboring houses is related to the value of our own house.  So our own house 

value is affected by the unmeasured influences of neighboring observations.  And the 

unmeasured influences of neighboring houses are similar to the unmeasured influences 

for our house because our neighbors are close:  the same things that affect our neighbors 

should affect us, too.  So the Wv term in Equation (2) incorporates the influence of 
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omitted variables on the value of our own house.  In a similar manner, the WX term also 

helps capture the influence of omitted variables whose effects would otherwise be 

subsumed in the error term.  

The spatial Durbin model thus captures the influence of air pollution, the presence 

of shopping centers, interstate highways, lakes, hospitals, multiple environmental 

disamenities, and all other omitted variables that vary across space.  In the presence of 

omitted variable bias, least squares estimates are plagued by a multitude of econometric 

sins.  A detailed proof of how spatial statistics achieves consistent and unbiased 

parameter estimates, unbiased estimates of the standard errors, and efficient parameter 

estimates where least squares may not, is available in Griffith (1988, p. 94-107). 

 

2.2.2 Choice of Hedonic Variables   The hedonic variables include structural 

house characteristics and neighborhood characteristics.  We aggregate our housing 

transactions to the CBG level.  The following CBG averages for house characteristics are 

used in the hedonics:  lot size in square feet, age of the house, size of the house in square 

feet, the number of full and partial bathrooms, and the number of detached structures on 

the lot.  Also included is the proportion of houses in each CBG that have garages, 

fireplaces, porches, patios, decks, pools and central air conditioning.  The squares of lot 

size, house size, and age are included because these variables may influence a house’s 

value in a nonlinear fashion. 

 In addition to structural house characteristics, many neighborhood characteristics 

may affect house value.  Standard urban economic theory suggests that distance from the 

central business district affects house price.  The central business district is the primary 
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employment center and therefore many individuals want to live close in order to reduce 

commuting costs.  The house price appreciation literature suggests that community 

population growth may raise house prices (Archer, Gatzlaff and Ling, 1996).  The 

amenity literature suggests that neighborhood racial composition, education levels, 

income levels, and poverty rates also affect house prices.   

Local public economic theory suggests that house value may depend on taxes and 

school quality.  To avoid possible assessor bias, the local property tax rate is used as a 

long-run estimate of tax price (Brasington, 2000).  Public school quality is an important 

local public service that affects house prices (Goodman and Thibodeau, 1998; Haurin and 

Brasington, 1996).  Proficiency test scores appear to be one of the most consistent 

measures of public school quality used in house price hedonics (Brasington, 1999a).  All 

else constant, higher tax rates in a CBG are expected to lower average house value while 

improved school quality is expected to increase average house value. 

The focus variable is a measure of environmental quality. We have data on the 

location of point-specific pollution sites in Ohio’s six major urban areas.  Such sites are 

of interest to policy makers because they are urban sites that may qualify as brownfield 

sites, or may be slated for future cleanup under Superfund.  Data on the polluting sites 

comes from the Ohio Environmental Protection Agency (OEPA).  The OEPA maintains a 

Master Sites List that documents sites in Ohio “where there is evidence of, or it is 

suspected that waste management has resulted in the contamination of air, water, or soil 

and there is a confirmed or potential threat to human health or the environment.  These 

sites may be operating or abandoned industrial facilities, contaminated or potentially 

contaminated public water supplies with the source of contamination undiscovered, or 
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other locations where the environmental media is contaminated through a variety of 

waste management activities” (OEPA, 1997).   

We call the waste management contamination sites hazards.  Some of these 

hazards are Superfund sites.  Example of hazards include the following:  Twinsburg 

Township landfill; Republic Steel Corporation Niles Plant; Kimble Coal Co.; Reilly Tar 

& Chemical Corp.; Goodyear Tire & Rubber Blue Pond; Miami county incinerator; 

Emery Transportation tanker spill; Mayer China (dumping into Tinker’s Creek); Milford 

wellfield / unknown source; and U.S. Steel Central Furnaces.   

Being near a hazard should be associated with depressed house prices.  Therefore, 

all else constant, the greater the average distance to the nearest hazard, the higher the 

average house price is expected to be.  DISTANCE TO HAZARD is constructed by 

taking each house and finding the distance from the house to the nearest hazard.  This 

distance is averaged over all the houses in the CBG, resulting in an observationally 

weighted distance measure.  The mean distance to the nearest hazard for houses in a CBG 

is 1.28 miles.  The minimum is 0.0125, and the maximum is 10.9, with 1.08 miles as the 

median.  The 25th percentile is 0.68 miles, and the 75th percentile is 1.63 miles.  Distance 

to the nearest hazard may be nonlinearly related to house price, so a natural log 

transformation of distance to the nearest hazard is included in the hedonic regressions 

(Hite, 1998; Nelson, Genereux and Genereux, 1992).   

 Our measure of pollution does not account for the presence of multiple sources of 

pollution.  But previous studies measure pollution imperfectly as well.  Studies that 

measure proximity to a single well-known polluting source (e.g., Nelson, Genereux and 

Genereux, 1992) ignore the presence of other sources of pollution that may in fact be 
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closer.  Studies that measure the number of polluting sources in a county or census tract 

(e.g., Hoehn, Berger and Blomquist, 1987) fail to note how close or far the pollution 

sources are, and if there are none in the county, how close the nearest source is.5  Suppose 

a house is on the edge of a county which has no polluting sources, but there are two 

polluting sources directly across the county line.  Using numbers of hazards per county as 

a measurement rule would record zero polluting sources when in fact there are two 

nearby.   

Using distance to the nearest hazard helps get around these sources of 

measurement error.  And even though distance to the nearest hazard does not account for 

the possibility that there could be more than one hazard nearby, this may not pose a major 

problem:  the influence of hazards on property values is known to drop off quickly with 

distance (e.g., Nelson, Genereux and Genereux, 1992; Hite, et al., 2001), so most of the 

effect is attributable to the nearest hazard.6  So, although using distance from the nearest 

hazard is not a perfect way to measure pollution, it has certain advantages over other 

methods, and it is a reasonable way to measure pollution with precedent in the literature 

(e.g. Kohlhase, 1991; Thayer, et al., 1992). 

      Variable definitions and sources are shown in Table 1; the means of the hedonic 

variables are shown in Table 2.  We expect high correlations between the non-housing 

explanatory variables, but most are 0.31 or less in absolute value.  The highest 

correlations are between SCHOOL QUALITY and GROWTH RATE (0.57), SCHOOL 

QUALITY and POVERTY (-0.49), POVERTY and INCOME (-0.46), and POVERTY 

and %WHITE (-0.40). 

(Insert Table 1) 
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(Insert Table 2) 

The hazards come from a 1994 listing, while the housing transactions come from 

1991.  In most cases we expect this to cause no problems, but there are circumstances 

under which it might matter.  If there are hazards in 1991 that affect house price but are 

not listed in the Master Sites List, DISTANCE TO HAZARD is overstated. On the 

other hand, if the hazard is still on the list, but it is no longer a source of pollution, it 

might no longer affect house price.  In this case our DISTANCE TO HAZARD variable 

is probably understated.  The Master Sites List records 1,192 sites in Ohio in the year of 

our sample:  16 were delisted (1.3%), while 18 (1.5%) were added during our sample 

year.  Therefore the vast majority of sites listed in 1994 were probably also listed in 1991, 

the year of our housing sample. 

Our level of observation is the CBG; thus, it should be noted that all inferences 

from the models are based on a ‘representative’ CBG transaction, similar to models using 

representative households as the unit of analysis.  The data consists of 550 census block 

groups in the Akron metropolitan area, 911 in Cincinnati, 1,580 in Cleveland, 872 in 

Columbus, 524 in Dayton, and 611 in Toledo.  These census block groups represent 

5,018, 7,148, 13,723, 7,680, 6,779, and 3,907 housing transactions, respectively.  The 

housing transactions are a cross section of arm’s length sales of single-family detached 

houses sold in 1991.  With 44,255 housing transactions in 5,051 census block groups, on 

average there are about 10 houses sold in each census block group.   

We have additional data on 2,004 census block groups in the relevant counties in 

which no housing transactions are recorded.  These census block groups are in rural 

school districts.7  It is possible that our analysis might suffer from sample selection bias, 
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but experimentation shows that the inverse Mills ratio is not statistically significant in 

any of the six hedonic regressions, suggesting that sample selection bias is not an issue in 

our estimation situation.8  Still, our selection experiment may not have captured the 

relationship between frequency of sales and DISTANCE TO HAZARD accurately.  

When we omit all houses within 0.68 miles of a hazard, two parameter estimates lose 

statistical significance.  So if houses near hazards sell less often, our hedonics probably 

understate the discount from being near a hazard. 

Another potential estimation problem is endogeneity.  Jud (1985) pointed out that 

school quality may be endogenous to house prices, but he concluded that proper 

instruments are hard to find.  It has remained an open problem in the literature.  However, 

endogeneity is a problem of contemporaneous correlation between a regressor and the 

error term.  The error term consists in part of omitted variables.  When these omitted 

variables are correlated with included regressors, the regressors are endogenous, and 

yield biased and inconsistent parameter estimates.  Spatial statistics helps control for the 

influence of omitted variables, thus alleviating the need to instrument for endogenous 

variables (Brasington, 2001). 

 

2.3  Second Stage Hedonic Analysis:  The Demand Model 

The demand analysis that we present follows 2SLS methodology in that we use 

instrumental variables for the prices that are included as explanatory variables.  However, 

analogous to the first stage hedonic estimates, our estimation technique specifically 

accounts for spatial dependence and omitted variable bias.  The form of the demand 

model is given by 
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Q = ρWQ + Dγ + WDα + ε,            (4) 

where Q is the quantity of environmental quality available to residents of the census 

block group, as measured by proximity to a hazard.  D represents a vector of implicit 

prices and demand shift variables.  The error structure is analogous to that in Equation 

(3). 

2.3.1 Demand Variables   We include the implicit price of environmental quality 

in the demand equation, as well as the implicit prices for three related goods: school 

quality, house size and lot size.  Implicit prices are calculated from the partial derivative 

of HOUSE PRICE with respect to DISTANCE TO HAZARD, SCHOOL QUALITY, 

HOUSE SIZE, and LOT SIZE.  The implicit prices are calculated for each of the 5,051 

census block groups and pooled across metropolitan areas in order to estimate a single 

environmental quality demand curve, in accordance with the traditional two-stage 

hedonic demand literature. 

 The price of the good is an element of every demand function.  The implicit prices 

of environmental quality, school quality, house size and lot size are endogenous, and 

therefore instruments must be found that are uncorrelated with distance to the nearest 

environmental hazard.  The instruments chosen are ARTS (correlation 0.085), 

ACCESSIBILITY (0.205), MSA GROWTH (-0.069), and COMMUTE TIME (0.024).  

Definitions and sources of the instrumental variables are found in Table 1.  In addition to 

being uncorrelated with the dependent variable, the instruments should be sufficiently 

related to the variable for which they serve as instruments.  The instruments pass the 

Nelson and Startz (1990) test for irrelevant instruments.9,10    
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 Other variables are included in the demand equation as shift variables.  If 

environmental quality is a normal good, higher community income may be related to 

increased demand for environmental quality.  In addition, people in cities with a pleasant 

climate may go outside to enjoy the weather more.  Thus, better environmental quality 

may be demanded the more temperate the climate.  Enjoyment of the weather is expected 

to diminish the closer a person is to an environmental disamenity.   

 %GRADUATE DEGREE is also included as a shift variable.  People with high 

educational attainment may be more aware of the harmful effects of pollution and may 

therefore demand more environmental quality than people with lower levels of 

education.11  Finally, having children may affect a household’s demand for 

environmental quality.  Children tend to play in drainage ditches and abandoned landfills 

more than adults, so parents with children are probably more fervent about demanding 

locations far from environmental hazards than households without children.  We 

therefore expect %WITH CHILDREN to be a positive demand shifter.  Having discussed 

the empirical model, the estimation results are now presented. 

 

III.  RESULTS 

3.1  Hedonic Regression Results 

 The results of the six spatial hedonic regressions for Akron, Cincinnati, 

Cleveland, Columbus, Dayton and Toledo are shown in Table 3. 

(Insert Table 3) 

Before specific regression results are discussed, notice that the optimal spatial lag 

coefficient ranges from 0.18 to 0.42.  Given the number of explanatory variables 
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included, the optimal spatial lag coefficient is moderately large.  Because the spatial 

model is more complex than ordinary least squares, it is appropriate to test whether the 

incorporation of spatial dependence adds to the analysis.  It appears that it does:  a 

likelihood ratio test for overall spatial effects rejects the null hypothesis of no spatial 

effects at the 0.01 significance level for all six hedonics.12   

The hedonic results generally conform to expectations.  Having a large proportion 

of houses with pools within a census block group seems to make no difference to average 

house price in Ohio; having a deck, patio, porch, outbuildings and additional bathrooms 

also generally fails to attain statistical significance.  But having a larger proportion of 

houses with garages raises average house price, and so does being in a census block 

group with larger houses, larger lots, and more houses with fireplaces.  In addition, block 

groups with older houses generally suffer price discounts.  There are a few neighborhood 

variables that do not completely follow expectations.  Distance to the central business 

district (CBD) is related to average house price in less than half the regressions; the 

increasingly dispersed nature of employment centers may be the driving force behind the 

less consistent capitalization of the downtown access variable (Mieszkowski and Mills, 

1993).  Contrary to the house price appreciation literature, population GROWTH RATE 

is not related to average house price and neither is the tax rate.  On the other hand, school 

quality, the proportion of white residents, high average education and income levels 

generally are positively related to average house prices, and poverty is negatively related 

to average house prices.  The regressions explain between 85% and 97% of the variation 

in house prices. 
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The focus variable in the hedonic estimations is DISTANCE TO HAZARD.  The 

parameter estimates for this variable are always positive and are statistically significant in 

five of the six MSAs.  The parameter estimate is insignificant for Toledo, the urban area 

with the highest average value of DISTANCE TO HAZARD.13  Still, Smolen et al. 

(1992) find significant results for Toledo even for houses 2.6 to 5.75 miles from a 

landfill, which is much farther out than our 75th percentile distance of 1.63 miles.   

Because both the dependent variable and DISTANCE TO HAZARD are logged, 

the parameter estimates are elasticities.  The elasticities are small, ranging from 0.004 to 

0.063.  The results confirm prior studies’ findings that environmental quality has a small, 

statistically significant relationship with house prices.  At the mean, all else constant, 

increasing the average distance of a house from the nearest environmental hazard by one 

percent is associated with a 0.029 percent rise in the price of the average house.   

Previous studies have investigated the relationship between property values and 

environmental quality, but the measure of environmental quality varies greatly (Jackson, 

2001; Boyle and Kiel, 2001).  Hoehn, Berger and Blomquist (1987) use suspended 

particulates, the number of superfund sites, the number of hazardous waste facilities, and 

the number of water pollution discharges in a county.  Leggett and Bockstael (2000) use 

fecal coliform concentration and distance from a sewage treatment facility.  Zabel and 

Kiel (2000) use four air quality measures, and Smith and Deyak (1975) and Jackson 

(1979) use suspended particulates.  Kohlhase (1991) uses distance from the nearest toxic 

waste dump.  None of these articles finds a consistent relationship between house prices 

and environmental quality.  
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Other studies, like ours, find a consistent relationship between house prices and 

environmental quality.  Again, the measure of environmental quality varies.  Beron, 

Murdoch and Thayer (2001) find elasticities of house price with respect to ozone, 

particulates, and visibility of –0.30, -0.41, and 1.04.  Smolen et al. (1992) find that for 

houses within 2.6 miles of a hazardous waste landfill, each extra mile from the landfill is 

worth between $9,000 and $14,000.  Folland and Hough (2000) find that land price 

consistently suffers a 6% discount if it is near a nuclear reactor.14  This 6% discount is 

similar to the 5.5% discount Reichert, et al. (1992) find for houses affected by a nearby 

landfill.  Nelson, Genereux and Genereux (1992) find the elasticity of house price with 

respect to distance from a landfill is 0.094. Our 0.029 mean elasticity is most similar to 

that of Gawande and Jenkins-Smith (2001), who use a similar statistical technique to find 

a house price elasticity with respect to distance from a spent nuclear fuel shipment route 

of 0.032.  

 

3.2  Demand for Environmental Quality 

 Our demand analysis is based on 5,051 observations at the census block group 

level.  Like Beron, et al. (2001), we find that aggregating from individual house prices 

does not substantially change the results.  Theory provides little guidance for choosing 

the shape of the demand curve.  A series of Davidson and MacKinnon (1981) tests for 

functional form suggests that the log-linear functional form is best for our data.  

Including the implicit prices in the demand estimation creates a generated regressor 

problem; therefore, the demand estimation is weighted by a combination of the estimated 

variance of the error terms from the hedonic regressions and the demand estimations, as 
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detailed in Brasington (2002).15  We estimate the demand curve using a number of 

statistical techniques, including 2SLS, LIML, and the same spatial Durbin technique used 

for the house price hedonics.   

 It should be noted that the all the models we estimate are based on the standard 

assumptions widely held in the literature.  That is, segmented markets give rise to 

differences in underlying implicit prices because of variations in local cost functions for 

housing, while consumer preferences for housing are more or less homogeneous.  Thus, 

individual hedonics price functions are estimated for each market segment, while the 

parameters of the demand function are constrained to be equal across all market 

segments. 

Rosen (1974) suggested that second-stage hedonic demand regressions be 

performed using two-stage least squares (2SLS), and much of the ensuing literature has 

done so.  We believe that using 2SLS, because it does not address omitted variable bias, 

may result in biased parameter estimates with invalid hypothesis testing.  Still, we 

perform 2SLS to compare it to the estimates achieved using spatial statistics.  The results 

are found in the 2SLS column of Table 4.  Own price is positive and statistically 

insignificant, but most of the other parameter estimates appear plausible.  But as we shall 

see, the results change when other estimation techniques are adopted.  The fit of the 

model is poor, the explanatory variables explaining only three percent of the variation in 

the dependent variable. 

The next column of results in Table 4 is LIML, a model using limited-information 

maximum likelihood.  Like 2SLS, LIML does not address omitted variable bias, but 

unlike 2SLS, the LIML model is based on the maximum likelihood approach, as is the 
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spatial model.  Compared to the 2SLS model, the LIML model shows a downward-

sloping demand curve.  Using LIML also inverts the relationships between environmental 

quality and house size, and environmental quality and climate.  Adjusted R-squared has 

risen from 0.03 to 0.25. 

(Insert Table 4) 

Some researchers have used fixed effects models to address the influence of 

omitted variables within a spatial context (Deaton, 1988; Beron, et al., 2001).  The Fixed 

Effect column in Table 4 reports results of a fixed effects model that uses metropolitan 

area dummy variables to capture spatial effects.16  The INCOME and %GRADUATE 

DEGREE estimates are halved, and the presence of children no longer influences the 

demand for environmental quality.  The parameter estimates of own price, price of house 

size and climate double.  Adjusted R-squared rises from 0.25 in the standard LIML model 

to 0.85 in the Fixed Effect model. 

But second-stage demand estimations achieve identification by constraining all 

parameter estimates to equality, following standard practice (e.g., Brown and Rosen, 

1982).  By including fixed effect MSA dummies that allow the intercept to vary we may 

undermine the identification of the demand equation achieved by the method of Brown 

and Rosen.  However, there is another way to capture omitted spatial effects:  by using 

spatial statistics.  Use of spatial statistics allows us to capture omitted effects that vary 

across space while retaining identification.  In addition, spatial statistics allows us to 

capture omitted effects at a more localized level than by including fixed effect MSA 

dummy variables. 
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Leggett and Bockstael (2000), Geoghegan, et al. (1997), Bockstael and Bell 

(1998), and Gawande and Jenkins-Smith (2001) use spatial models to estimate the 

relationship between house prices and environmental quality.  But our study seems to be 

the first to use spatial statistics to estimate a demand curve of environmental quality.  

Because of the negative externalities of polluting sites, the demand for environmental 

quality by one household is probably related to its neighbor’s demand for environmental 

quality.  Spatial statistics can address the interrelations; it can also pick up the influence 

of omitted variables, suggesting that the use of spatial statistics is a potentially important 

advance in the urban and environmental economics literatures.  The results of the spatial 

demand estimation are shown in the Spatial column of Table 4. 

As with the hedonic regressions, significant spatial effects are found at the 0.01 

level of significance.17  The spatial lag coefficient is 0.77, which is high; explanatory 

power is higher for the spatial estimation than for all previous demand estimations.  The 

large ρ estimate is at least partly a result of the way the environmental variable is 

constructed, because average distance to the nearest hazard should be similar for nearby 

block groups.  But we propose that the spatial technique may be capturing more influence 

of omitted variables than the previous models.  Our proposal rests not only on the large 

estimate of ρ but also on the fact that many of the parameter estimates change markedly 

when using the spatial model. 

Both PRICE OF HOUSE SIZE and PRICE OF LOT SIZE have positive 

parameter estimates, which would suggest that house size and lot size are substitutes for 

environmental quality.  However, the parameter estimate for lot size is statistically 

insignificant.  Therefore, lot size, which 2SLS found to be a substitute for environmental 
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quality, appears to be unrelated to environmental quality.18  If one were to calculate the 

economic effect, one would find a cross-price elasticity between lot size and 

environmental quality of only 0.02.  So when lots become more expensive, it appears that 

home buyers do not make any tradeoff in the amount of environmental quality that they 

purchase. 

House size, on the other hand, seems to be a substitute for environmental quality.  

The cross-price elasticity is 0.91, almost unit elastic.  Thus when the price of larger 

houses rises by ten percent, people purchase nine percent more environmental quality.  In 

contrast, the 2SLS model showed house size to be a weak complement to environmental 

quality.  And while the LIML model showed house size to be a substitute, the cross-price 

elasticity was paltry:  0.000067.  

The 2SLS model showed no relationship between the price of school quality and 

environmental quality.  The LIML models showed school quality and environmental 

quality to be substitutes.  In contrast, the results of the spatial model suggest instead that 

people who purchase high-quality schools also tend to purchase high levels of 

environmental quality.  The cross-price elasticity is –0.80, which is not trivial.  All else 

constant, if school quality were to become ten percent cheaper, households would 

purchase eight percent more environmental quality. 

Among the demand shift variables, higher income is statistically significantly 

related to higher demand for environmental quality.  The non-spatial models achieved the 

same result, but suggested a stronger effect than the spatial model.  The estimated income 

elasticity of demand for the spatial model is 0.044.  The result suggests that people do not 

purchase much more environmental quality when their incomes rise. The 2SLS model 
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suggested that a better climate resulted in reduced purchases of environmental quality.  

The LIML models suggested the more intuitively appealing, opposite conclusion.  But the 

spatial model suggests that there is no significant relationship between climate and 

environmental quality.  Because the climate differs little across Ohio’s urban areas, such 

a result is reasonable.  The statistical insignificance of the spatial model may illustrate 

how spatial statistics achieves less biased estimates of the standard errors of parameter 

estimates.  The spatial statistics model suggests that households with children and 

households with the highest education levels purchase more environmental quality; both 

of these outcomes are consistent with expectations. 

Perhaps the most compelling reason for using the spatial model is in estimating 

welfare impacts that are relevant to policy decisions.  The estimate of the own price 

elasticity of demand for environmental quality in the spatial model is  –0.12, suggesting 

an even more inelastic demand curve than given by the LIML or Fixed Effects models.19  

This finding has significance in that it suggests that changes in environmental quality 

may result in larger changes in consumer welfare than would be the case if spatial effects 

are not accounted for.  To illustrate, we compare the per household consumer surplus 

change of a move from the sample median distance to hazard (1.08 miles) to a distance ½ 

mile closer to a hazard (i.e. 0.58 miles), using our LIML and spatial models.  Consumer 

surplus estimated from the LIML model without spatial effects suggest a $2,276 per 

household one-time loss of surplus while the spatial model estimates a one-time 

consumer surplus loss of $3,278.20  Given the even higher elasticity for the Fixed Effects 

model, we would expect that it would generate even greater bias in the welfare estimates 

than does the LIML model.   
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Our estimated own-price elasticity of demand of –0.12 may be compared to the 

results of other studies, none of which use spatial statistics, all of which include only air 

pollution, and some of which are not identified.  Zabel and Kiel (2000) find a price 

elasticity of –0.479 for ozone and –0.128 for particulates.  Bender, et al. (1980) find an 

air quality price elasticity that ranges from –0.503 to –0.262.  Beron, et al. (2001) report a 

visibility elasticity of –0.0024, and Nelson’s (1978) particulates demand elasticity ranges 

from –1.2 to –1.4.    

 

IV.  CONCLUSION 

 Using an extensive data set, we have investigated the relationship between 

polluted sites and house price, and we have estimated the demand for environmental 

quality in urban areas.  Both the hedonics and the demand estimation use spatial statistics 

to address omitted variable bias and spatial effects in the data. 

 The hedonic regressions suggest that environmental hazards have a small, 

statistically significant relationship with average constant-quality house price.  At the 

mean, moving ten percent closer to the nearest hazard is expected to decrease average 

house price by three-tenths of one percent.   

The demand regression suggests that people with higher incomes, higher 

education levels, and people with children demand more environmental quality.  The 

implicit price of environmental quality is negatively related to quantity demanded; the 

price elasticity of demand of –0.12 suggests a relatively inelastic demand curve.  School 

quality and environmental quality tend to be purchased together.  But larger houses and 

environmental quality seem to be substitutes:  when large houses become more 
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expensive, people purchase smaller houses farther from polluting sources.21  When large 

houses become less costly, people buy larger houses and less environmental quality.  On 

the other hand, lot size seems to be neither a complement nor a substitute for 

environmental quality. 

 The presence of significant spatial effects in both the hedonic regressions and the 

demand regression suggests that researchers should account for spatial effects in future 

work.  The spatial effects may capture spillovers, omitted variables, or other forms of 

spatial dependence.  Whatever the cause of the spatial effects, spatial statistical methods 

should be used to increase efficiency and consistency and reduce the bias of parameter 

estimates.   

The governmental units of the United States are devoting considerable resources 

to cleaning up the environment.  The current study traces out a demand for environmental 

quality curve for residents of urban areas in Ohio.  If our estimates are accurate, then 

taking a house that is slightly further than one mile from a hazard and moving it one half 

a mile closer would result in a mean welfare loss (lost consumer surplus) of $3,278.  This 

represents about 6% of the value of the average house.  Looking at the Cincinnati sample, 

we find 1451 houses that are about one mile from a hazard.  Moving these houses half a 

mile away from the hazard would increase consumer surplus by nearly $4.8 million 

dollars22—more if the hazard were removed altogether.  The $4.8 million grossly 

underestimates the change in property values, though, because the 1451 houses are only 

those between 1.1 and 0.6 miles from a hazard. Our estimate excludes houses closer to a 

hazard, and it excludes houses that are not part of our sample:  our sample only includes 

those houses that sold during 1991. In addition, it is noteworthy that the LIML model 
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estimates just $3.3 million in total consumer surplus for these houses.  This type of 

welfare loss estimate can provide the basis for establishing priorities for cleanup of 

polluted urban sites, as well as providing input for siting and compensation schemes for 

new disamenities.   

Future research should use the same statistical technique to see to what extent 

residents of other urban areas value environmental quality.  Another important, but 

difficult area of investigation would be to compare the demand for environmental quality 

of urban residents to that of rural residents. 
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Table 1 
Variable Definitions And Source 
Variable Name Definition (Source) 
HOUSE PRICE Mean house transaction price for 1991 sales in census block 

group, deflated by MSA and logged (1) 
AIR CONDITIONING Proportion of houses in census block group that have central air 

conditioning (1) 
FIREPLACE Proportion of houses in census block group that have a fireplace 

(1) 
OUTBUILDINGS Average number of detached structures on lot for houses in census 

block group (1) 
LOT SIZE Mean size of lot in tens of thousands of square feet in census block 

group (1) 
AGE Mean age of house per census block group in hundreds of years 

(1) 
HOUSE SIZE Average size of house in census block group in thousands of 

square feet (1) 
GARAGE Proportion of houses in census block group that have a garage (1) 
FULL BATHROOMS Mean number of full bathrooms in house in census block group (1)
PART BATHROOMS Mean number of partial bathrooms in house in census block group 

(1) 
PORCH Proportion of houses in census block group that have a porch (1) 
PATIO Proportion of houses in census block group that have a patio (1) 
DECK Proportion of houses in census block group that have a deck (1) 
POOL Proportion of houses in census block group that have a pool (1) 
%WHITE Proportion of census block group residents who are white (5) 
%POVERTY Proportion of persons living under official 1989 poverty income in 

census block group (5) 
TAX RATE Property tax rate in mills; property tax collections from school 

taxes on all real Class 1 (residential) properties divided by 1000, 
divided by total real Class 1 property valuation, after tax reduction 
factors are accounted for (2) 

SCHOOL QUALITY Percentage of students passing the Ohio 9th grade proficiency test 
in 1990; average passage rate of math, reading, writing, and 
citizenship sections (2) 

DISTANCE TO CBD Distance from centroid of census block group to central business 
district, in miles 

DISTANCE TO HAZARD Average distance from house to nearest environmental hazard in 
census block group, in miles, logged (4) 

GROWTH RATE Rate of change in school district population from 1980 to 1990 (3) 
PRICE OF ENV QUALITY Log price of a unit of environmental quality derived from hedonic 

regressions 
PRICE OF SCHOOL Price of a unit of public school quality derived from hedonic 
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QUALITY regressions 
PRICE OF HOUSE SIZE Price of an extra 10,000 square feet of house size derived from 

hedonic regressions 
PRICE OF LOT SIZE Price of an extra thousand square feet of lot size derived from 

hedonic regressions 
CLIMATE Mildness of the climate in the MSA; beginning with 1000 points, 

points are subtracted for the number of very hot and very cold 
months, the degree of seasonal temperature variation, the number 
of heating and cooling degree days, and the number of freezing, 
zero-degree, and 90-degree days (6) 

INCOME Average income in census block group in tens of thousands of 
dollars, deflated by MSA (5) 

%GRADUATE DEGREE Proportion of persons in census block group who have a master’s 
degree or doctorate (5) 

%WITH CHILDREN Proportion of households in census block group that have children 
under 18 years of age (5) 

ARTS A measure of the number of arts performances, museums, and 
library holdings in the MSA (6) 

ACCESSIBILITY A measure of the MSA ease of accessibility; a weighted average 
of lower than average commuting time to work, mass transit 
availability, and highway, air, and train accessibility (6) 

MSA GROWTH 1990 population of the MSA divided by 1980 population (6) 
COMMUTE TIME Time of commute for average person in census block group (5) 
Sources:  (1) Amerestate (1991) housing transaction tape; (2) Ohio Department of Education, 
Division of Education Management Information Services; (3) School District Data Book (MESA 
Group, 1994), (4) Ohio Environmental Protection Agency Division of Emergency and Remedial 
Response (1994), (5) U.S. Bureau of the Census (1990), (6) Places Rated Almanac (Savageau and 
Boyer, 1993).  All nominal values are deflated by MSA using ACCRA (1991, 1992) data. 
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Table 2 
Hedonic Means 
Variable Akron Cincinnati Cleveland Columbus Dayton Toledo 
HOUSE PRICE 10.8 

(0.62) 
11.0 
(0.56) 

10.8 
(0.64) 

10.9 
(0.58) 

10.8 
(0.61) 

10.7 
(0.66) 

AIR CONDITIONING 0.19 
(0.25) 

0.41 
(0.35) 

0.14 
(0.23) 

0.41 
(0.37) 

0.36 
(0.32) 

0.25 
(0.31) 

FIREPLACE 0.31 
(0.32) 

0.33 
(0.36) 

0.29 
(0.34) 

0.38 
(0.38) 

0.37 
(0.35) 

0.27 
(0.33) 

OUTBUILDINGS 0.06 
(0.16) 

0.05 
(0.13) 

0.01 
(0.05) 

0.02 
(0.07) 

0.04 
(0.11) 

0.04 
(0.15) 

LOT SIZE 1.21 
(0.97) 

1.10 
(0.80) 

1.00 
(0.93) 

0.86 
(0.59) 

0.97 
(0.57) 

0.87 
(0.68) 

AGE 0.50 
(0.20) 

0.53 
(0.25) 

0.55 
(0.24) 

0.44 
(0.25) 

0.47 
(0.23) 

0.51 
(0.26) 

HOUSE SIZE 1.36 
(0.33) 

1.44 
(0.39) 

1.43 
(0.38) 

1.43 
(0.40) 

1.39 
(0.41) 

1.36 
(0.43) 

GARAGE 0.82 
(0.24) 

0.74 
(0.32) 

0.87 
(0.25) 

0.68 
(0.33) 

0.78 
(0.29) 

0.84 
(0.27) 

FULL BATHROOMS 1.23 
(0.31) 

1.33 
(0.39) 

1.19 
(0.31) 

1.28 
(0.36) 

1.30 
(0.38) 

1.16 
(0.29) 

PART BATHROOMS 0.28 
(0.31) 

0.23 
(0.28) 

0.30 
(0.34) 

0.31 
(0.34) 

0.23 
(0.27) 

0.30 
(0.36) 

PORCH 0.68 
(0.29) 

0.69 
(0.31) 

0.65 
(0.32) 

0.60 
(0.34) 

0.63 
(0.31) 

0.68 
(0.33) 

PATIO 0.01 
(0.09) 

0.23 
(0.26) 

0.04 
(0.13) 

0.29 
(0.29) 

0.42 
(0.31) 

0.13 
(0.22) 

DECK 0.06 
(0.12) 

0.11 
(0.20) 

0.09 
(0.16) 

0.10 
(0.18) 

0.07 
(0.14) 

0.06 
(0.16) 

POOL 0.004 
(0.02) 

0.018 
(0.07) 

0.009 
(0.05) 

0.005 
(0.04) 

0.010 
(0.04) 

0.019 
(0.09) 

SCHOOL QUALITY 32.8 
(13.7) 

31.1 
(14.4) 

28.3 
(18.4) 

28.1 
(18.5) 

27.7 
(19.6) 

26.4 
(13.1) 

%WHITE 0.82 
(0.30) 

0.82 
(0.29) 

0.73 
(0.36) 

0.79 
(0.29) 

0.78 
(0.34) 

0.84 
(0.25) 

DISTANCE TO CBD 5.2 
(4.6) 

9.9 
(5.9) 

11.4 
(8.0) 

5.1 
(4.5) 

5.0 
(4.1) 

5.2 
(3.4) 

%GRADUATE 
DEGREE 

0.10 
(0.21) 

0.08 
(0.08) 

0.09 
(0.16) 

0.09 
(0.11) 

0.07 
(0.08) 

0.06 
(0.07) 

INCOME 3.33 
(1.91) 

3.83 
(1.98) 

3.63 
(2.14) 

3.68 
(2.05) 

3.48 
(1.65) 

3.64 
(1.73) 

%POVERTY 0.14 
(0.15) 

0.12 
(0.13) 

0.13 
(0.14) 

0.14 
(0.16) 

0.14 
(0.15) 

0.13 
(0.13) 

TAX RATE 33.9 34.8 34.5 36.3 38.5 37.5 
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(4.5) (4.4) (8.6) (3.7) (8.2) (2.8) 
DISTANCE TO 
HAZARD 

-0.148 
(0.61) 

-0.012 
(0.81) 

0.016 
(0.66) 

0.029 
(0.74) 

0.219 
(0.58) 

0.051 
(0.70) 

GROWTH RATE 0.014 
(0.08) 

0.030 
(0.07) 

0.031 
(0.07) 

0.030 
(0.09) 

0.010 
(0.04) 

-0.019 
(0.05) 

#Observations 550 911 1580 875 524 611 
Means shown with standard deviation in parentheses below. 
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Table 3 
Hedonic Results 
Variable Akron Cincinnati Cleveland Columbus Dayton Toledo 
AIR CONDITIONING 0.006 

{0.023} 
(0.2) 

0.088** 
{0.094} 
(18.0) 

0.016 
{0.001} 
(0.2) 

0.065** 
{0.000} 
(6.4) 

0.052 
{-0.006} 
(4.0) 

0.032 
{0.026} 
(1.6) 

FIREPLACE 0.047** 
{0.119} 
(8.0) 

0.119** 
{0.035} 
(20.6) 

0.029 
{0.019} 
(3.8) 

0.128** 
{-0.018} 
(25.6) 

0.079** 
{-0.060} 
(8.2) 

-0.015** 
{-0.065} 
(1.4) 

OUTBUILDINGS 0.104** 
{0.341} 
(6.8) 

0.011 
{0.168} 
(1.0) 

0.138 
{0.077} 
(2.4) 

-0.004 
{-0.227} 
(2.2) 

0.130 
{-0.138} 
(2.0) 

0.109 
{-0.106} 
(3.8) 

LOT SIZE 0.039** 
{-0.115} 
(6.6) 

0.128** 
{-0.139} 
(8.2) 

0.107** 
{-0.074} 
(7.0) 

0.136** 
{0.136} 
(14.0) 

0.114** 
{0.066} 
(4.0) 

0.176** 
{-0.149} 
(14.8) 

LOT SIZE SQUARED -0.003 
{0.007} 
(0.6) 

-0.012 
{0.014} 
(2.8) 

-0.009* 
{0.006} 
(5.4) 

-0.012** 
{-0.025} 
(9.4) 

-0.014 
{-0.034} 
(2.6) 

-0.016* 
{0.013} 
(5.8) 

AGE -1.03** 
{0.529} 
(16.4) 

-0.100 
{0.699} 
(2.6) 

-1.18** 
{0.771} 
(50.6) 

-1.01** 
{-0.012} 
(22.8) 

-0.569* 
{0.859} 
(5.0) 

-0.770** 
{1.825} 
(25.6) 

AGE SQUARED 0.144 
{-0.314} 
(1.0) 

-0.302* 
{-0.448} 
(5.4) 

0.330** 
{-0.592} 
(23.0) 

0.697** 
{0.027} 
(16.4) 

0.001 
{-0.723} 
(4.4) 

-0.002** 
{-1.271} 
(13.8) 

HOUSE SIZE 0.730** 
{-0.072} 
(17.4) 

0.285* 
{0.050} 
(5.2) 

0.523** 
{-0.106} 
(23.6) 

0.336** 
{-0.410} 
(9.0) 

0.651** 
{0.455} 
(23.6) 

0.591** 
{-0.081} 
(23.8) 

HOUSE SIZE SQUARED -0.078 
{-0.076} 
(3.0) 

0.026 
{-0.035} 
(2.2) 

-0.065* 
{0.039} 
(4.8) 

0.007** 
{0.134} 
(8.4) 

-0.073 
{-0.162} 
(4.4) 

-0.055 
{0.015} 
(2.6) 

GARAGE 0.176** 
{-0.112} 
(30.3) 

0.148** 
{-0.038} 
(26.4) 

0.124** 
{-0.042} 
(25.0) 

0.069** 
{0.000} 
(9.0) 

0.167** 
{0.071} 
(28.0) 

0.235** 
{-0.148} 
(49.0) 

FULL BATHROOMS 0.033 
{-0.070} 
(2.2) 

0.032 
{-0.067} 
(2.6) 

0.021** 
{-0.056} 
(6.0) 

0.011** 
{-0.133} 
(13.2) 

-0.010 
{-0.025} 
(0.4) 

0.020 
{-0.094} 
(1.6) 

PART BATHROOMS 0.026 
{0.019} 
(1.0) 

-0.013 
{-0.002} 
(0.4) 

-0.013 
{-0.011} 
(0.8) 

-0.046 
{0.001} 
(3.0) 

0.046 
{0.060} 
(3.4) 

0.039 
{0.049} 
(2.8) 

PORCH 0.000 
{-0.053} 
(1.0) 

-0.008 
{-0.048} 
(0.8) 

0.031* 
{-0.003} 
(5.4) 

0.050* 
{-0.015} 
(5.8) 

-0.002 
{0.035} 
(0.6) 

-0.025** 
{-0.100} 
(6.0) 

PATIO 0.265* 
{0.206} 
(5.8) 

-0.023 
{-0.036} 
(1.0) 

-0.029 
{0.000} 
(0.4) 

0.058** 
{0.019} 
(7.6) 

-0.010 
{-0.102} 
(3.8) 

-0.002 
{0.096} 
(1.6) 
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DECK 0.033 
{-0.305} 
(1.8) 

0.072 
{0.117} 
(4.2) 

0.048 
{0.039} 
(3.4) 

0.012 
{-0.026} 
(0.2) 

-0.104* 
{-0.028} 
(4.8) 

0.058 
{0.156} 
(2.2) 

POOL 0.000 
{0.000} 
(0.0) 

0.218 
{-0.481} 
(3.6) 

0.063 
{-0.055} 
(0.2) 

-0.085 
{0.000} 
(0.2) 

0.106 
{0.621} 
(2.4) 

0.066 
{-0.303} 
(1.4) 

SCHOOL QUALITY 0.002** 
{0.004} 
(20.2) 

0.002* 
{-0.004} 
(5.6) 

0.008** 
{-0.001} 
(88.4) 

0.009* 
{-0.007} 
(5.2) 

0.001* 
{0.001} 
(5.8) 

0.004 
{0.001} 
(2.2) 

%WHITE 0.457** 
{0.053} 
(81.4) 

0.384** 
{-0.259} 
(36.8) 

0.238** 
{-0.086} 
(44.8) 

0.080** 
{0.179} 
(33.4) 

0.018** 
{0.322} 
(37.8) 

0.256** 
{0.023} 
(28.4) 

DISTANCE TO CBD -0.005 
{-0.003} 
(1.8) 

0.003 
{-0.006} 
(2.2) 

-0.010** 
{0.006} 
(8.2) 

-0.030** 
{0.022} 
(6.0) 

0.014 
{-0.019} 
(2.6) 

0.023 
{-0.010} 
(4.2) 

%GRADUATE DEGREE 0.741** 
{0.131} 
(69.8) 

0.695** 
{0.662} 
(33.2) 

0.387** 
{-0.060} 
(45.2) 

0.491** 
{0.766} 
(70.6) 

0.354* 
{0.269} 
(5.8) 

0.794** 
{0.647} 
(15.2) 

INCOME 0.027** 
{0.017} 
(12.4) 

0.015 
{-0.004} 
(3.4) 

0.026** 
{-0.007} 
(22.0) 

0.002 
{-0.015} 
(2.8) 

0.009* 
{0.011} 
(5.6) 

0.010* 
{-0.005} 
(4.8) 

%POVERTY -0.064** 
{-0.255} 
(6.4) 

-0.145** 
{-0.518} 
(9.6) 

-0.569** 
{-0.468} 
(117.8) 

-0.399** 
{-0.379} 
(47.0) 

-0.693** 
{0.047} 
(41.2) 

-0.266* 
{-0.083} 
(5.8) 

TAX RATE 0.000 
{0.008} 
(4.2) 

0.003 
{0.000} 
(1.8) 

0.003 
{-0.002} 
(2.8) 

-0.001 
{0.005} 
(0.6) 

-0.004 
{-0.011} 
(4.4) 

0.008 
{-0.016} 
(1.8) 

DISTANCE TO HAZARD 0.063* 
{0.084} 
(5.4) 

0.053** 
{-0.014} 
(9.8) 

0.011** 
{-0.017} 
(6.4) 

0.034** 
{-0.045} 
(15.4) 

0.004 
{-0.004} 
(4.0) 

0.010** 
{-0.005} 
(6.2) 

GROWTH RATE -0.122 
{-0.154} 
(2.2) 

0.096 
{0.078} 
(0.6) 

-0.771** 
{0.490} 
(10.0) 

-0.047 
{0.121} 
(1.0) 

0.072 
{0.215} 
(0.6) 

1.58 
{-1.349} 
(1.2) 

CONSTANT 0.678** 
(108.2) 

0.798** 
(168.0) 

0.918** 
(1146.2) 

0.883** 
(438.8) 

0.841** 
(139.0) 

0.626** 
(84.0) 

Unrestricted log likelihood -838.0 -1906.8 -3576.2 -1740.8 -780.6 -1013.2 
Optimal spatial lag 
coefficient, ρ 

0.32 
(26.8) 

0.27 
(28.6) 

0.18 
(86.4) 

0.24 
(57.4) 

0.18 
(8.0) 

0.42 
(57.4) 

Sum of squared errors 6.6 15.7 94.1 37.6 5.8 9.4 
Total sum of squares 208.6 286.1 645.8 294.3 195.1 266.9 
Adjusted R-square 0.97 0.95 0.85 0.87 0.97 0.96 
#Observations 550 911 1580 875 524 611 
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Parameter estimates shown, with spatial lag estimates α in brackets below, and likelihood ratio (LR) 
statistic in parentheses below that. **=statistically significant at 0.05, *=statistically significant at 0.10.  
Dependent variable is HOUSE PRICE, which is logged.  LR = -2(optimal unrestricted log likelihood – 
optimal restricted log likelihood), which is asymptotically distributed as chi-square with degrees of 
freedom equal to the number of restrictions (two in this case:  the variable and its spatial lag are set equal 
to zero). To avoid decimal problems in Spacestatpack, the constant term is set equal to 9.  The null 
hypothesis of no significant spatial effects is rejected at the 0.01 level for all hedonics.   
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Table 4 
Demand for Environmental Quality Results 
 2SLS LIML Fixed Effect 

 
Spatial Means 

(Std Errors) 
CONSTANT 2.88** 

(5.8) 
 

0.976** 
(4.6) 

-7.108** 
(37.1) 

0.091** 
(25.6) 

__ 
— 

LOG PRICE OF ENV 
QUALITY 

0.057 
(1.4) 
 

-0.308** 
(37.6) 

-0.811** 
(167.3) 

-0.123** 
{0.140} 
(6.8) 

0.943 
(0.583) 

PRICE OF SCHOOL QUALITY -0.0001 
(1.3) 
 

0.85x10-4** 
(3.0) 

0.00038** 
(18.9) 

-0.178* 
{0.175} 
(4.8) 

4.470 
(2.345) 

PRICE OF HOUSE SIZE -0.3x10-4** 
(4.8) 
 

0.11x10-4** 
(13.9) 

0.22x10-4** 
(55.9) 

0.284** 
{-0.373} 
(16.6) 

3.202 
(0.375) 

PRICE OF LOT SIZE 0.1x10-4* 
(1.7) 
 

-0.14x10-7 
(0.5) 

-0.25x10-7 
(1.6) 

0.002 
{0.000} 
(0.6) 

7.844 
(1.966) 

INCOME 0.066** 
(6.6) 
 

0.055** 
(8.8) 

0.022** 
(6.6) 

0.015** 
{0.005} 
(46.6) 

2.9251 
(1.3656) 

CLIMATE -0.445** 
(6.2) 
 

0.100** 
(2.6) 

2.23** 
(59.9) 

-0.113 
{0.000} 
(2.2) 

5.648 
(0.2142) 

%GRADUATE DEGREE 0.284** 
(2.8) 
 

0.180** 
(3.1) 

0.085** 
(3.1) 

0.180** 
{-0.115} 
(15.2) 

0.081 
(0.133) 

%WITH CHILDREN 0.313** 
(2.7) 
 

0.359** 
(5.6) 

-0.044 
(1.5) 

0.035* 
{0.055} 
(5.4) 

0.333 
(0.114) 

Optimal spatial lag coefficient, ρ - 
 

- - 0.77 
(6976.4) 

- 

Adjusted R-square 0.03 0.25 0.86 0.90 - 
Parameter estimates shown with T-ratio in parentheses below for non-spatial model.  For the spatial model, 
spatial lag estimate α is shown in brackets below, and likelihood ratio (LR) statistic is shown in 
parentheses.  Dependent variable is DISTANCE TO HAZARD, which is logged.  **=statistically 
significant at 0.05, *=statistically significant at 0.10.  To avoid decimal problems in Spacestatpack, the 
constant term is set equal to 9.  The null hypothesis of no significant spatial effects is rejected at the 0.01 
level for the spatial model.  Number of observations is 5051. 
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1 Beron, et al. (2001) use segmentation by year instead of by housing market. 
 
2 Our use of a maximum likelihood technique in the empirical section also may help with identification 
(Epple, 1987). 
 
3 This is the form the Chow tests take.  First it is desirable to test whether all six metropolitan areas can be 
pooled or not.  With a critical F value of 1.96, the Chow test F value of 164.4 suggests that there is 
sufficient variation in the housing markets to make it improper to run a single pooled regression containing 
all six MSAs.  Next six additional Chow tests are run.  Each tests whether the MSA in question is 
significantly different from the remaining five.  With a critical F value of 1.96, the following F values are 
obtained:  Akron, 54.0; Cincinnati, 60.7; Cleveland, 24.7; Columbus, 28.0; Dayton, 3.9; Toledo, 28.0.  
Thus each MSA is significantly different from the remaining five.  
 
4 One reason a simple spatial autoregressive model is not estimated is that SAS could not handle the large 
data set.  SpaceStatPack statistical software has been designed by Kelley Pace (2000) to specifically handle 
large data sets, and it uses the spatial Durbin model.  Thanks to Kelley Pace for providing SpaceStatPack 
free of charge at http://finance.lsu.edu/re/kelleyresume.html and www.spatial-statistics.com. 
 
5 In this paper we have the advantage of using census block group data rather than census tract data.  For 
example, in the CBGs used in our dataset, there is an average of 10.27 transactions per CBG, whereas 
census tracts average 36.94 transactions each.  Furthermore, the geographic extent of CBGs is just 2.5 
KM2, where it is over 7 KM2 for census tracts. 
 

6 In addition, our use of spatial statistics helps control for the presence of the second- and third-nearest 
hazards. 
 
7 See Brasington (1999b) for a classification of the central city and suburban school districts in the six 
largest metropolitan areas in Ohio used in the current study.  Also, the 2,004 rural census block groups have 
twice the proportion of agricultural workers and almost half the population density of the 5,051 urban 
census block groups. 
  
8 Haurin and Hendershott (1991) were the first to suggest that sample selection bias might be an issue in 
house price regressions, and Jud and Seaks (1994) were the first to correct for it.  With a 4.6 critical value 
at the 0.10 level, our calculated LR statistics for our inverse Mills ratios are 2.6 (Akron), 2.0 (Cincinnati), 
1.2 (Cleveland), 0.8 (Columbus), 1.2 (Dayton), and 1.0 (Toledo).  Full probit and hedonic results available 
upon request. 
 
9 The Nelson and Startz (1990) critical value is 2.  The calculated Nelson and Startz statistics are 2115 for 
environmental quality; 21,809 for school quality; 2717 for house size and 2390 for lot size. 
 
10 It should be noted that the variables used to instrument the implicit prices are aggregated at differing 
levels.  We believe that this further reduces correlations between the instrumented variables much in the 
same way as in ranking or grouping methods (Bowden and Turkington, p 59, 1984). 
 
11 Because our estimated demand curves are representative of a census block group, and not an individual, 
there is some concern that shifters like income and education may not be entirely exogenous shifters.  
Experimentation with the models suggests that these variables are valid shifters in that, when omitted, the 
effects on the estimated own price parameters are large.  In addition, part of the argument for using spatial 
statistics is that it helps to eliminate bias from endogeneity.  We are grateful to a referee who pointed out 
this potential problem to us. 
 
12 With a critical LR statistic of 44.3 at the 0.01 level of significance, the calculated LR statistics are the 
following:  Akron, 121.8; Cincinnati, 112.0; Cleveland, 179.0; Columbus, 171.0; Dayton, 77.8; Toledo, 
157.2. 

http://finance.lsu.edu/re/kelleyresume.html
http://www.spatial-statistics.com/


 49

                                                                                                                                                                             
 
13 Thanks to a referee for making this interesting observation. 
 
14 Table 2 fixed period effects model. 
 
15 While the 2SLS, LIML, and Fixed Effects regressions are corrected for generated regressor bias, the 
Spatial results are not.  The statistical package we use for the spatial model, Spacestatpack, is not able to 
save residuals or predicted values.  We are not overly concerned because the generated regressor correction 
did not change the t-ratios much for the three non-spatial models.  We are indebted to a referee for pointing 
out the generated regressor problem.  This appears to be only the second two-stage hedonic demand study 
to correct for generated regressor bias (Brasington, 2002). 
 
16 Akron is the reference MSA in this model. 
 
17 The calculated LR statistic is 6987.8; the critical value at 0.01 is 20.1. 
 
18 Recall that the variables are averages over census block groups.  Therefore the general wording “lot 
size…unrelated to environmental quality” is correct, for example, but the meaning more specifically 
reflects the relationship between average lot size in a census block group and the average level of 
environmental quality in a census block group.  Thanks to a referee for pointing this out. 
 
19 Although the 2SLS model has an even less elastic demand, we do not consider it for comparison given 
the insignificance and contrary sign of the coefficient. 
 
20 Of course, since the area in a concentric circle around a hazard would shrink significantly between 1.037 
and 0.537 miles, the calculated surplus change would have to be adjusted to estimate changes in aggregate 
welfare. 
 
21 See footnote 18. 
 
22 The per household consumer surplus gain for a move from 1 to 1.5 miles is estimated to be $4,464. 
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